Our previous study found that hydrogen gas (H2) could efficiently inhibit lung cancer progression; however, the underlying mechanisms still remains to be elucidated. The present study aimed to explore the roles of H2 in lung cancer cell autophagy, and reveal the effects of autophagy on H2-mediated lung cancer cell apoptosis and the underlying mechanisms. The expression levels of proteins associated with cell apoptosis and autophagy were detected using western blot analysis. Cell autophagy was inhibited by 3-methyladenine treatment or Beclin1 downregulation, while rapamycin was used to induce autophagy. Cell growth and apoptosis were detected using the Cell Counting Kit-8 and flow cytometry assays, respectively. The results demonstrated that cell apoptosis and autophagy were significantly enhanced in the A549 and H1975 lung cancer cell lines treated with H2. However, autophagy enhancement weakened H2 roles in promoting cell apoptosis and vice versa. In addition, it was found that H2 treatment induced marked decreases in the protein expression levels of phosphorylated STAT3 and Bcl2, and overexpression of STAT3 abolished H2 roles in promoting cell apoptosis and autophagy. Overall, the present study revealed that H2 can promote lung cancer cell apoptosis and autophagy via inhibiting the activation of STAT3/Bcl2 signaling and suppression of autophagy can enhance H2 roles in promoting lung cancer cell apoptosis.
Endotoxin-induced lung injury is one of the major causes of death induced by endotoxemia, however, few effective therapeutic options exist. Hydrogen inhalation has recently been shown to be an effective treatment for inflammatory lung injury, but the ...
Background: Asthma is one of the most common noninfectious chronic diseases characterized by type II inflammation. This study aimed to investigate the effects of molecular hydrogen on the pathogenesis of asthma. Methods: OVA sensitized asthma mouse ...
Background: To investigate whether the administration of hydrogen/oxygen mixture was superior to oxygen in improving symptoms in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods: This prospective, ...
Although intensity-modulated radiation therapy (IMRT) has been developed as an alternative to conventional radiotherapy, reducing bone marrow damage is limited. Thus, a novel technology is needed to further mitigate IMRT-induced bone marrow damage. ...
Carcinostatic effects of combined use of ascorbic acid (Asc), 2-O-phospho- or 6-O-palmitoyl ascorbate (Asc2Phos, Asc6Palm) or diverse alkanoyl Asc, and nano-sized platinum-poly(N-vinyl-pyrrolidone) colloid (PVP-Pt; 2-nm diameter) were examined on ...
Introduction: Chemotherapy-induced neuropathic pain (CINP) is one of the most common complications of chemotherapeutic drugs which limits the dose and duration of potentially life-saving anticancer treatment and compromises the quality of life of ...