Protective effects of dissolved molecular hydrogen against hydrogen peroxide-, hydroperoxide-, and glyoxal-induced injuries to human skin keratinocytes
Molecular hydrogen (H2) is recognized as a gaseous antioxidant, and it is expected to ameliorate various disorders related to oxidative stress and inflammation. However, there are still many unclear points regarding its effectiveness in the skin. Therefore, the purpose of this study was to examine the protective effect of H2 against ultraviolet (UV) irradiation-related stress injury in human epidermal HaCaT cells. We investigated the effects of H2 against three types of UV-derived oxidative stress using human skin keratinocytes: hydrogen peroxide (H2O2)-induced oxidative stress, tert-butyl hydroperoxide (t-BuOOH)-induced lipid peroxidation stress, and glyoxal-induced carbonyl stress. Our results showed that H2 exerted cytoprotective effects against stress induced by H2O2, t-BuOOH, and glyoxal. Furthermore, our results also revealed that H2 suppressed H2O2-induced increases in intracellular peroxide and H2O2 levels, and suppressed the progression of lipid peroxidation. Taken together, our results demonstrate that H2 can exert protective effects against oxidative stress-, lipid peroxidation-, and carbonyl stress-induced cellular injuries in human keratinocytes, partly mediated via suppression of intracellular oxidative stress and peroxide generation. Therefore, H2 is expected to be utilized as an effective and attractive component in cosmetic formulations in the future.
Background: Acne vulgaris is a prevalent dermatological disease characterized by skin eruptions, which may decrease the sufferer's quality of life. Hydrogen purification treatment is a new procedure used in cosmetology to improve the skin parameters ...
Strong acidic electrolyzed water (StAEW) is known to inactivate microorganisms but is not fully explored in the medical field. This study is aimed at exploring StAEW as a potential wound care agent and its mechanism. StAEW (pH: 2.65, ORP: 1159 mV, ...
Oxidative stress is proven to be critical for the initiation and progression of vitiligo. Molecular hydrogen (H2) possesses potent antioxidant activity and has been shown to protect against various oxidative stress-related diseases. In this study, we ...
Radionuclide tritium is widely used in the nuclear energy production industry and creates a threat to human health through radiation exposure. Herein, the radioactive elimination and radioprotective effect of hydrogen-rich water (HRW), a potential ...
Chronic ultraviolet (UV) exposure-induced oxidative stress is associated with the pathogenesis of skin damage. However, the nuclear factor erythroid‑2‑related factor 2 (Nrf2) pathway is a critical factor in protecting cells against UVB‑induced ...
The aim of this study is to examine whether molecular hydrogen (H2) is able to reduce oxidative stress after corneal damage induced by UVB irradiation. We previously found that UVB irradiation of the cornea caused the imbalance between the ...