Neuroprotective potential of molecular hydrogen against perinatal brain injury via suppression of activated microglia

Akihiro Hirakawa, Akio Suzumara, Akira Iwase, Fumitaka Kikkawa, Hideyuki Takeuchi, Hiroyuki Tsuda, Hua Li, Kenji Imai, Kinji Ohno, Rika Miki, Seiji Sumigama, Shinya Toyokuni, Takafumi Ushida, Tatsuya Mizuno, Tomoko Nakano, Tomomi Kotani, Yukio Mano

Read more:

DOI: 10.1016/j.freeradbiomed.2015.12.015 DOI is the universal ID for this study.

This link will take you to the full study.

Abstract:

Exposure to inflammation in utero is related to perinatal brain injury, which is itself associated with high rates of long-term morbidity and mortality in children. Novel therapeutic interventions during the perinatal period are required to prevent inflammation, but its pathogenesis is incompletely understood. Activated microglia are known to play a central role in brain injury by producing a variety of pro-inflammatory cytokines and releasing oxidative products. The study is aimed to investigate the preventative potential of molecular hydrogen (H2), which is an antioxidant and anti-inflammatory agent without mutagenicity. Pregnant ICR mice were injected with lipopolysaccharide (LPS) intraperitoneally on embryonic day 17 to create a model of perinatal brain injury caused by prenatal inflammation. In this model, the effect of maternal administration of hydrogen water (HW) on pups was also evaluated. The levels of pro-inflammatory cytokines, oxidative damage and activation of microglia were determined in the fetal brains. H2 reduced the LPS-induced expression of pro-inflammatory cytokines, oxidative damage and microglial activation in the fetal brains. Next, we investigated how H2 contributes to neuroprotection, focusing on microglia, using primary cultured microglia and neurons. H2 prevented LPS- or cytokine-induced generation of reactive oxidative species by microglia and reduced LPS-induced microglial neurotoxicity. Finally, we identified several molecules influenced by H2, involved in the process of activating microglia. These results suggested that H2 holds promise for the prevention of inflammation related to perinatal brain injury.

Publish Year 2016
Country Japan
Rank Positive
Journal Free Radical Biology and Medicine
Primary Topic Pregnancy
Secondary TopicNeuroprotection
Model Mouse
Tertiary TopicUterine Inflammation
Vehicle Water (Dissolved)
pH Neutral
Application Ingestion
Comparison
Complement